Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Meital Charni

Meital Charni

Weizmann Institute of Science, Israel

Title: Novel p53 target genes secreted by the liver are involved in non-cell-autonomous regulation

Biography

Biography: Meital Charni

Abstract

The tumor suppressor p53 is a transcription factor that prevents cancer development and is involved in regulation of various physiological processes. This is mediated both by induction of cell cycle arrest and apoptosis and by controlling the expression of a plethora of target genes, including secreted proteins. It has been demonstrated that p53 may exert its effect in non-cell-autonomous fashion by modulating the expression of genes that encode for secreted factors. In this study, we utilized our microarray data to identify and characterize novel p53 target genes expressed in human liver cells and associated with steroid hormones processing and transfer. We identified the steroid hormones binding factors, sex hormone binding globulin, corticosteroid-binding globulin and cytochrome P450 family 21 subfamily A polypeptide 2, as novel p53 target genes. Their expression and secretion were increased following p53 activation in various hepatic cells. We observed that p53 wild type mice exhibited higher levels of corticosteroid-binding globulin compared with their p53 null counterparts. We demonstrated that the induction of the steroid hormones binding factors can be mediated by binding to specific p53 responsive elements within their promoters. In addition, utilizing conditioned medium experiments we have shown that p53 dependent induction of sex hormone binding globulin secretion from liver cells enhances apoptosis of breast cancer cells. Moreover, depletion of sex hormone binding globulin abolished the induction of breast cancer cells death. The newly identified p53 target genes suggests a novel non-cell-autonomous tumor suppressive regulation mediated by p53 that is central for maintaining organism homeostasis.